NumPy 教程
1. NumPy 教程 2. NumPy 安装 3. NumPy Ndarray 对象 4. NumPy 数据类型 5. NumPy 数组属性 6. NumPy 创建数组 7. NumPy 从已有的数组创建数组 8. NumPy 从数值范围创建数组 9. NumPy 切片和索引 10. NumPy 高级索引 11. NumPy 广播(Broadcast) 12. NumPy 迭代数组 13. NumPy 位运算 14. NumPy 字符串函数 15. NumPy 数学函数 16. NumPy 算术函数 17. NumPy 统计函数 18. NumPy 排序、条件刷选函数 19. NumPy 字节交换 20. NumPy 副本和视图 21. NumPy 矩阵库(Matrix) 22. NumPy 线性代数 23. NumPy IO 24. NumPy Matplotlib

NumPy 切片和索引

NumPy 切片和索引

ndarray对象的内容可以通过索引或切片来访问和修改,与 Python 中 list 的切片操作一样。

ndarray 数组可以基于 0 - n 的下标进行索引,切片对象可以通过内置的 slice 函数,并设置 start, stop 及 step 参数进行,从原数组中切割出一个新数组。

实例

import numpy as np a = np.arange(10) s = slice(2,7,2) # 从索引 2 开始到索引 7 停止,间隔为2 print (a[s])

输出结果为:

[2  4  6]

以上实例中,我们首先通过 arange() 函数创建 ndarray 对象。 然后,分别设置起始,终止和步长的参数为 2,7 和 2。

我们也可以通过冒号分隔切片参数 start:stop:step 来进行切片操作:

实例

import numpy as np a = np.arange(10) b = a[2:7:2] # 从索引 2 开始到索引 7 停止,间隔为 2 print(b)

输出结果为:

[2  4  6]

冒号 : 的解释:如果只放置一个参数,如 [2],将返回与该索引相对应的单个元素。如果为 [2:],表示从该索引开始以后的所有项都将被提取。如果使用了两个参数,如 [2:7],那么则提取两个索引(不包括停止索引)之间的项。

实例

import numpy as np a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] b = a[5] print(b)

输出结果为:

5

实例

import numpy as np a = np.arange(10) print(a[2:])

输出结果为:

[2  3  4  5  6  7  8  9]

实例

import numpy as np a = np.arange(10) # [0 1 2 3 4 5 6 7 8 9] print(a[2:5])

输出结果为:

[2  3  4]

多维数组同样适用上述索引提取方法:

实例

import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print(a) # 从某个索引处开始切割 print('从数组索引 a[1:] 处开始切割') print(a[1:])

输出结果为:

[[1 2 3]

 [3 4 5]

 [4 5 6]]

从数组索引 a[1:] 处开始切割

[[3 4 5]

 [4 5 6]]

切片还可以包括省略号 ,来使选择元组的长度与数组的维度相同。 如果在行位置使用省略号,它将返回包含行中元素的 ndarray。

实例

import numpy as np a = np.array([[1,2,3],[3,4,5],[4,5,6]]) print (a[...,1]) # 第2列元素 print (a[1,...]) # 第2行元素 print (a[...,1:]) # 第2列及剩下的所有元素

输出结果为:


[2 4 5]

[3 4 5]

[[2 3]

 [4 5]

 [5 6]]