NumPy 教程
1. NumPy 教程 2. NumPy 安装 3. NumPy Ndarray 对象 4. NumPy 数据类型 5. NumPy 数组属性 6. NumPy 创建数组 7. NumPy 从已有的数组创建数组 8. NumPy 从数值范围创建数组 9. NumPy 切片和索引 10. NumPy 高级索引 11. NumPy 广播(Broadcast) 12. NumPy 迭代数组 13. NumPy 位运算 14. NumPy 字符串函数 15. NumPy 数学函数 16. NumPy 算术函数 17. NumPy 统计函数 18. NumPy 排序、条件刷选函数 19. NumPy 字节交换 20. NumPy 副本和视图 21. NumPy 矩阵库(Matrix) 22. NumPy 线性代数 23. NumPy IO 24. NumPy Matplotlib

NumPy 副本和视图

NumPy 副本和视图

副本是一个数据的完整的拷贝,如果我们对副本进行修改,它不会影响到原始数据,物理内存不在同一位置。

视图是数据的一个别称或引用,通过该别称或引用亦便可访问、操作原有数据,但原有数据不会产生拷贝。如果我们对视图进行修改,它会影响到原始数据,物理内存在同一位置。

视图一般发生在:

  • 1、numpy 的切片操作返回原数据的视图。
  • 2、调用 ndarray 的 view() 函数产生一个视图。

副本一般发生在:

  • Python 序列的切片操作,调用deepCopy()函数。
  • 调用 ndarray 的 copy() 函数产生一个副本。

无复制

简单的赋值不会创建数组对象的副本。 相反,它使用原始数组的相同id()来访问它。 id()返回 Python 对象的通用标识符,类似于 C 中的指针。

此外,一个数组的任何变化都反映在另一个数组上。 例如,一个数组的形状改变也会改变另一个数组的形状。

实例

import numpy as np a = np.arange(6) print ('我们的数组是:') print (a) print ('调用 id() 函数:') print (id(a)) print ('a 赋值给 b:') b = a print (b) print ('b 拥有相同 id():') print (id(b)) print ('修改 b 的形状:') b.shape = 3,2 print (b) print ('a 的形状也修改了:') print (a)

输出结果为:

我们的数组是:

[0 1 2 3 4 5]

调用 id() 函数:

4349302224

a 赋值给 b:

[0 1 2 3 4 5]

b 拥有相同 id():

4349302224

修改 b 的形状:

[[0 1]

 [2 3]

 [4 5]]

a 的形状也修改了:

[[0 1]

 [2 3]

 [4 5]]

视图或浅拷贝

ndarray.view() 方会创建一个新的数组对象,该方法创建的新数组的维数更改不会更改原始数据的维数。

实例

import numpy as np # 最开始 a 是个 3X2 的数组 a = np.arange(6).reshape(3,2) print ('数组 a:') print (a) print ('创建 a 的视图:') b = a.view() print (b) print ('两个数组的 id() 不同:') print ('a 的 id():') print (id(a)) print ('b 的 id():' ) print (id(b)) # 修改 b 的形状,并不会修改 a b.shape = 2,3 print ('b 的形状:') print (b) print ('a 的形状:') print (a)

输出结果为:

数组 a:

[[0 1]

 [2 3]

 [4 5]]

创建 a 的视图:

[[0 1]

 [2 3]

 [4 5]]

两个数组的 id() 不同:

a 的 id():

4314786992

b 的 id():

4315171296

b 的形状:

[[0 1 2]

 [3 4 5]]

a 的形状:

[[0 1]

 [2 3]

 [4 5]]

使用切片创建视图修改数据会影响到原始数组:

实例

import numpy as np arr = np.arange(12) print ('我们的数组:') print (arr) print ('创建切片:') a=arr[3:] b=arr[3:] a[1]=123 b[2]=234 print(arr) print(id(a),id(b),id(arr[3:]))

输出结果为:

我们的数组:

[ 0  1  2  3  4  5  6  7  8  9 10 11]

创建切片:

[  0   1   2   3 123 234   6   7   8   9  10  11]

4545878416 4545878496 4545878576

变量 a,b 都是 arr 的一部分视图,对视图的修改会直接反映到原数据中。但是我们观察 a,b 的 id,他们是不同的,也就是说,视图虽然指向原数据,但是他们和赋值引用还是有区别的。

副本或深拷贝

ndarray.copy() 函数创建一个副本。 对副本数据进行修改,不会影响到原始数据,它们物理内存不在同一位置。

实例

import numpy as np a = np.array([[10,10], [2,3], [4,5]]) print ('数组 a:') print (a) print ('创建 a 的深层副本:') b = a.copy() print ('数组 b:') print (b) # b 与 a 不共享任何内容 print ('我们能够写入 b 来写入 a 吗?') print (b is a) print ('修改 b 的内容:') b[0,0] = 100 print ('修改后的数组 b:') print (b) print ('a 保持不变:') print (a)

输出结果为:

数组 a:

[[10 10]

 [ 2  3]

 [ 4  5]]

创建 a 的深层副本:

数组 b:

[[10 10]

 [ 2  3]

 [ 4  5]]

我们能够写入 b 来写入 a 吗?

False

修改 b 的内容:

修改后的数组 b:

[[100  10]

 [  2   3]

 [  4   5]]

a 保持不变:

[[10 10]

 [ 2  3]

 [ 4  5]]

更多相关文章

Python 直接赋值、浅拷贝和深度拷贝解析