NumPy 教程
1. NumPy 教程 2. NumPy 安装 3. NumPy Ndarray 对象 4. NumPy 数据类型 5. NumPy 数组属性 6. NumPy 创建数组 7. NumPy 从已有的数组创建数组 8. NumPy 从数值范围创建数组 9. NumPy 切片和索引 10. NumPy 高级索引 11. NumPy 广播(Broadcast) 12. NumPy 迭代数组 13. NumPy 位运算 14. NumPy 字符串函数 15. NumPy 数学函数 16. NumPy 算术函数 17. NumPy 统计函数 18. NumPy 排序、条件刷选函数 19. NumPy 字节交换 20. NumPy 副本和视图 21. NumPy 矩阵库(Matrix) 22. NumPy 线性代数 23. NumPy IO 24. NumPy Matplotlib

NumPy 从已有的数组创建数组

NumPy 从已有的数组创建数组

本章节我们将学习如何从已有的数组创建数组。

numpy.asarray

numpy.asarray 类似 numpy.array,但 numpy.asarray 参数只有三个,比 numpy.array 少两个。

numpy.asarray(a, dtype = None, order = None)

参数说明:

参数 描述
a 任意形式的输入参数,可以是,列表, 列表的元组, 元组, 元组的元组, 元组的列表,多维数组
dtype 数据类型,可选
order 可选,有"C"和"F"两个选项,分别代表,行优先和列优先,在计算机内存中的存储元素的顺序。

实例

将列表转换为 ndarray:

实例

import numpy as np x = [1,2,3] a = np.asarray(x) print (a)

输出结果为:

[1  2  3]

将元组转换为 ndarray:

实例

import numpy as np x = (1,2,3) a = np.asarray(x) print (a)

输出结果为:

[1  2  3]

将元组列表转换为 ndarray:

实例

import numpy as np x = [(1,2,3),(4,5)] a = np.asarray(x) print (a)

输出结果为:

[(1, 2, 3) (4, 5)]

设置了 dtype 参数:

实例

import numpy as np x = [1,2,3] a = np.asarray(x, dtype = float) print (a)

输出结果为:

[ 1.  2.  3.]

numpy.frombuffer

numpy.frombuffer 用于实现动态数组。

numpy.frombuffer 接受 buffer 输入参数,以流的形式读入转化成 ndarray 对象。

numpy.frombuffer(buffer, dtype = float, count = -1, offset = 0)

注意:buffer 是字符串的时候,Python3 默认 str 是 Unicode 类型,所以要转成 bytestring 在原 str 前加上 b。

参数说明:

参数 描述
buffer 可以是任意对象,会以流的形式读入。
dtype 返回数组的数据类型,可选
count 读取的数据数量,默认为-1,读取所有数据。
offset 读取的起始位置,默认为0。

Python3.x 实例

import numpy as np s = b'Hello World' a = np.frombuffer(s, dtype = 'S1') print (a)

输出结果为:

[b'H' b'e' b'l' b'l' b'o' b' ' b'W' b'o' b'r' b'l' b'd']

Python2.x 实例

import numpy as np s = 'Hello World' a = np.frombuffer(s, dtype = 'S1') print (a)

输出结果为:

['H' 'e' 'l' 'l' 'o' ' ' 'W' 'o' 'r' 'l' 'd']

numpy.fromiter

numpy.fromiter 方法从可迭代对象中建立 ndarray 对象,返回一维数组。

numpy.fromiter(iterable, dtype, count=-1)
参数 描述
iterable 可迭代对象
dtype 返回数组的数据类型
count 读取的数据数量,默认为-1,读取所有数据

实例

import numpy as np # 使用 range 函数创建列表对象 list=range(5) it=iter(list) # 使用迭代器创建 ndarray x=np.fromiter(it, dtype=float) print(x)

输出结果为:

[0. 1. 2. 3. 4.]